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Renormalization group treatment of correlated percolation
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A renormalization group procedure is developed for correlated site percolation lattices that can be described
by Gaussian statistics. The procedure is a generalization of the procedure for independent site percolation
lattices. As an example, a simple renormalization group procedure is generalized from the independent trian-
gular lattice to the correlated triangular lattice. The procedure gives the exact percolation thpgsh%lfbr
both the independent and the correlated triangular lattice.

PACS numbg(s): 64.60.Ak, 05.10.Cc, 64.60.Cn, 05.4(

I. INTRODUCTION

d
_ Ni-1
In site percolation, one chooses the sites of a lattice to be m 21 N @

open or closed by means of a statistical algorithm. The site

percolation problem is then to determine the dependence @fhere 0<m=9-1. Let the lattice sites be located at the
statistical features of clusters of open sites on the type obositionsr,,, and letl,,=I(r,,). The statistics of the,, are
lattice and the algorithm. A particularly important quantity is completely characterized by th& point density functiori4]

the fraction of open sites at which there is a connected clusp_ (1, ... I_,) and the® point distribution function
ter of open sites that spans the lattice. This is denoted the
percolation probabilityp.. The traditional percolation algo- Follos - 1)

rithm is to choose the sites independently to be open with

probability p and closed with probability + p. Investigation (o In-1
of the percolation statistics of independent site lattices has - j_w' o f_m Palo, - or-1)dlo- - -dlo—y.
received a great deal of attention for many years, and many
approaches have been develofddd?]. Among these are 2
renormalization group method8]. _ o

There is a general approach that allows for both indepent€r€ Pa(lo, - - - I;-1)dlo- - -dle; is the probability that
dent and correlated site probabilities. One sets up a randofi€ Mth random variable lies betwedg, andlp+dly,, m
function I (r), defined at the position of each lattice site, =0 - 2—1,andFx(lo, ... In-1) is the probability that
and chooses a threshold valye The lattice site at position themth random variable is less than or equalfp.
r is then taken to be open I{r)<lI, and to be closed if For independent sites, ti point density and distribution

I(r)>1,. Of course, one could equally well reverse the in-functions are products of one point functioRs(l,) and

equalities. The independent site lattice is obtained by chood-1(Im). The most natural choice of the density function for a

ing 1(r) at the lattice sites to be independent random Varipe_rcolatlon Iatt|ce,.and_the choice generally.made for simu-

ables drawn from identical probability distributions. lations of percolation, is to take; to be uniform on the
The purpose of this paper is to describe a real space renofterval[0,1], i.e.,

malization group procedure that can be applied to correlated

lattices characterized by functioh&) that are described by 0, Im<0

Gaussian statistics. Gaussian statistics do not describe the P,(ly)=% 1, OsI,=<1 3

most general correlations between lattice sites. Nevertheless, 0 1.>1

Gaussian statistics describe a type of lattice which forms a oomT

useful generalization of independent lattices. Section Il de- o . . .

scribes the functionb(r) and their probability distributions. Then th_e sitem is open with probabilityp and closed with

Section Il develops the renormalization group procedure.pmbabIIIty 1=p, where

The procedure is illustrated by using a simple renormaliza-

tion group to determine the percolation threshold of the tri- 0, 1<0
angular lattice. p=F;(lp=9 I+, O0sls=1 (4)
1, I>1.

Il. PROBABILITY DISTRIBUTIONS - . . :
However, it is not necessary to choose this density function.

Consider a periodid-dimensional lattice havingl sites At least, any piecewise continuous density functl®y(l,,)
along each edge for a total 6t=NY sites. Label the sites will give the sitem open with probabilityp=F,(I1) and
along theith edge (=1,...d) by m;, 0=m;<N-1, so closed with probability *p.
that each lattice site is labeled by the $et}. It will be It is most useful to choose the density function to be a
convenient to relabel the lattice sites by the single index Gaussian function with mean 0 and variance 1, i.e.,
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1 12 Pgs(lg, ... lg—1) is obtained by settingv,=0,m
Pl(lm):\/:ex —5 (5) =R, ...7N—1 and taking the inverse Fourier transform.
2m With Eq. (9), a straightforward calculation gives
Then
1 1ol
Filo) 1 1 ; It ©) Mg(vo, - . Um-1) =€X ) mEO nEO Qmmmvn |-
= =-|1+erfl =] |, =0 n=
p=Fy(lt 2 2 (15
where erf§) is the error functiori5]:
Il. RENORMALIZATION GROUP
erf(x)= 2 Jxefyzdy_ 7 A real space renormalizaton group procedure on a perco-
Jm Jo lation lattice consists of three stefs.

(1) The lattice is divided into identical blocks of sites.
Multlp|ylng the One_point probablllty dQnSitieS for the lattice (2) Each block of sites is rep'aced by a Single site on a
sites gives thét point probability density renormalized lattice with renormalized probabilities.
N1 (3) The lattice spacing of the renormalized lattice is
exg — E D |2) ®) brought to the same value as the lattice spacing of the origi-
2 7o M) nal lattice.

The overall effect of this procedure is to replace the origi-

To generalize this treatment to correlated lattices, choosaal lattice by an identical lattice with renormalized probabili-
thel, to have a general Gaussian distribution withpoint  ties. Since the original and renormalized lattices are identi-

Pcﬁ(lo, - ,Icﬁ,l)zm

probability density cal, one can take the sarfiepoint density functiofEq. (9)]
for both. However, the threshold will be renormalized.
1 The application of the renormalization procedure—that is,
Po(lo, . .. 'I‘ﬂl):(zw)m—/zpp/zex’]( the way of choosing the lattice blocks and renormalized

probabilities—depends on the type of lattice. As an example

g it . and test of the procedure for correlated lattices, consider the
5 2 Z Qmnlmln (9)  percolation threshold of the triangular lattice. The exact
m=0n=0 value for the percolation threshold of the triangular lattice
Herel,, all have mean 0Q is the covariance matrix, can be deduced by an argument of Sykes and Eg84m
(also see Ref[9], p. 211 [10]. They showed that for any
Qmn={Imln), (100  plane latticel there is a “matching lattice’L*, such that
which is required to be positive definif€], and|Q| is the L)+ p(L*)=1 16
determinant ofQ. Since the discussion is limited to periodic Pe(L)Fpe(L7)=1. (16
lattices,
The triangular lattice is self matching so Ed6) implies that
Qmr=Q(rm,r)=Q(rm—rul)- (1)  pc=1/2. Essan9] (p. 211 pointed out that the argument is
_ _ valid for correlated as well as independent lattices.
This can be written For independent triangular lattices there is a simple renor-
malization group procedure that leads to the exact result for
Qrm=ral)=Qot(|rm=ral), (12} the percolation thresholi8] (Sec. 3.4. I will show that the

same procedure leads to the exact percolation threshold for
correlated triangular lattices. In the simple procedure the
original lattice is broken into triangular blocks of three sites
each. The corresponding site on the renormalized lattice is
open if a majority, i.e., two or three, of the sites on the block
Tare open. Label the sites of the original block by the indices
0, 1, and 2, and the renormalized site by the index 0. Then
the renormalization condition is

where Q,=Q(0) and|q(|rm—ral)|<1 [7]. Finally we re-
quire thatq(|r,—rp|)—0 as|ry,—ry|—%.

In working through the renormalozation group, it will be
necessary to determine probability densities
Pallg, - .- lg_1,), R<N. This is most conveniently done
by using the characteristic function, the Fourier transform o
the probability density4],

N-1
My(vo, - - ,voH)=J7 Jf eXp(imEO Imvm) Prlo=<I1)=3Plo<I7,I;<I1,l,>I7)
XPoy(lgs -+ dor_1)dlg- - dlog 1. +PrllosIt,l;1<I7,I5=<I7), 17
(13

where Pr(}<I7) is the probability that|<I1, etc. The first

Since term on the right is the sum of the three identical probabili-
ties that two of the original sites are open and one closed.
The second term is the probability that all three of the origi-

Mﬁ(vo,...,Uﬁfl):Mm(Uo,...,Uﬁfl,o,...,o, :
(14  nal sites are open. Now
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Prl o= I1,1,>17)=Pr(lo=

—Pr(lg=

I7)

It 1<

Il < I, 0=

I7),
(18)

ITl
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To investigate Eq(21), it is necessary to determine the
corresponding probability densities which can be done from
the characteristic functions. In E@L5), set allv,,=0 except
for vy, v4, anduv,. The only elements of thg matrix then
remaining areg(0)=1 andqg(a)=gq, wherea is the lattice

where the first term on the right is the probability that two Spacing. This gives

sites are open regardless of the other site. Combining this

with Eq. (17) gives

Prlg<1})=3Prlo<Iy,l;=<I7)
—2Prlg<It,l;<I1,l,<I7). (19
For an independent lattice, E(L9) becomes
p'=3p®-2p°, (20

which has fixed pointgp’=p, at p=0, 1, and 1/2. For a
correlated lattice, Eq19) becomes, in terms of the distribu-
tion functions,

Fi(l1)=3F(I1,11)—2F3(I1,I1,17).

This equation has fixed points;=1;, at It=—, p
=F,;(—»)=0, andl;=%, p=F;(«)=1. | will show that it
also has a fixed point at=0: p=F,(0)=1/2.

(21)

Ps(lo,l1,12)=

From Eq.(23),

0 1
F1(0)=jiwpl(|o)d|0=§- (26)
From Eq.(24),
0 (o0
FZ(O’O):f,wf,mPZ(loyll)dlodll
- 7] Patto taigats, 27)
oJo

where the last equality is obtained by letting— —1,,,
m=0, and 1. On making the change of variables

1+q 1-¢g
"N XN

(28
1+q 1—-q
"N XN
in P,(1q,14), Eq. (27) becomes
L —(12Q0) (X3 +y?)
FZ(O,O)ZTQO e 0 Ydx dy, (29)

1
(2on)3’2(1—q)¢1+2le‘{ B

1
M3(001vlyvz):eXp[ - EQO[(US"‘U%‘FUE)_ZQ(UOM

+vwatuvovg)]t- (22

Obtain M,(vqy,v4) from Eg. (22) by settingv,=0, and
M1(vgo) by also setting ;=0. Then take the inverse Fourier
transforms to obtain

1 12 }
Pl(lo)—mexp{—on, (23
. 1 p[ 12—2qlol,+12
s = exp —
O QuV1- 2 2Qq(1- )
(24)
and
<1+q)<lé+li+I§>—2q<loll+lllz+lzlo>} .
2Qo(1-q)(1+20) : 23

|
where the region of integration is bounded by the lines ob-

tained by settingl=0 and ;=0 in Eg. (28). Changing
variables to polar coordinates gives

F,(0,0)=

f ~(r®2Q) dr = ZG:T (30)

2’7TQO

where® is the angle between the lings=0 andl;=0. On
settingl =0 andl,;=0, Eq. (28) takes the forrm;-r=0,i
=0 and 1, where; is a unit normal to lina. If ® is the
angle between the two normal®,= 7—®, and

ar
costbz—cos=sin(®—§) no-n;=q, (31

s0 ® =(/2)+sin !q and

1
+_

Fa(0.0)= 7+ 5

sin” 1q. (32

From Eq.(25),
0 0 0
3(0,0,0):f f f P3(|O,Il,|2)d|0d|1d|2

:f:f:f:P?,(lo,l1,|2)d|0d|1dI2, (33
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where the last equality is obtained by letting,—

The solid angle) is equal to the area of the spherical

—In, m=0, 1, and 2. On making the change of variables triangle formed by the intersections of the three planes with

_[1+2q 1—q 1-q

b= V3 ** Vg ¥V*V 2 =
1+2q 1-q 1-q

hW=V—3 X"V gy V372 G4
| 1+2q ) 1-q
2= 3 X" B Y

in P3(lg,11,15), Eqg. (33) becomes

F3(O,0,O)=mf ff

xe Wy ) gy dy dz  (35)

a unit sphere centered at the origin. A theorem of spherical
geometry[11] gives this area to be the sum of the three
angles of the triangle minus. Since each angle of the tri-
angle is just equal to the dihedral angle between the corre-
sponding planes,

Q:®01+612+®20_7T! (37)

where®;; is the dihedral angle between planesnd]. If &;;
is the angle between the normals to planesdj, ©;; =
—®,;;, so

ijs
a
cosd;; = —cosO);; =sin( 0 - E) =n;-n;j=q. (39

Then®;;=(m/2)+sin 'q, Q= (m/2)+3sin 'g, and

1 3
where the region of integration is bounded by the planes F3(0,0,0)=§+ES|H71(1- (39)

obtained by setting,=0, 1,=0, andl,=0 in Eq. (34).
Changing variables to polar coordinates gives

o Q
_ —1212Qor 2y —
F3(0,0,0 e redr Pt (36)

Q
(2mQq)%? fo

where() is the solid angle bounded by the plarigs-0, 1,
=0, andl,=0. On setting ,=0,1,=0, andl,=0, Eq.(34)
takes the formn;-r=0, i=0, 1, and 2, where; is a unit
normal to plana.

Equations (26), (32), and (39) then show thatl{=0,
p=F,(0)=1% is indeed a fixed point of Eq21), so that the
renormalization group procedure gives the exact percolation
thresholdp.=1/2.
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