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Renormalization group treatment of correlated percolation
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A renormalization group procedure is developed for correlated site percolation lattices that can be described
by Gaussian statistics. The procedure is a generalization of the procedure for independent site percolation
lattices. As an example, a simple renormalization group procedure is generalized from the independent trian-
gular lattice to the correlated triangular lattice. The procedure gives the exact percolation thresholdpc5

1
2 for

both the independent and the correlated triangular lattice.

PACS number~s!: 64.60.Ak, 05.10.Cc, 64.60.Cn, 05.40.2a
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I. INTRODUCTION

In site percolation, one chooses the sites of a lattice to
open or closed by means of a statistical algorithm. The
percolation problem is then to determine the dependenc
statistical features of clusters of open sites on the type
lattice and the algorithm. A particularly important quantity
the fraction of open sites at which there is a connected c
ter of open sites that spans the lattice. This is denoted
percolation probabilitypc . The traditional percolation algo
rithm is to choose the sites independently to be open w
probabilityp and closed with probability 12p. Investigation
of the percolation statistics of independent site lattices
received a great deal of attention for many years, and m
approaches have been developed@1,2#. Among these are
renormalization group methods@3#.

There is a general approach that allows for both indep
dent and correlated site probabilities. One sets up a ran
function I (r ), defined at the positionr of each lattice site,
and chooses a threshold valueI T . The lattice site at position
r is then taken to be open ifI (r )<I T , and to be closed if
I (r ).I T . Of course, one could equally well reverse the
equalities. The independent site lattice is obtained by cho
ing I (r ) at the lattice sites to be independent random v
ables drawn from identical probability distributions.

The purpose of this paper is to describe a real space re
malization group procedure that can be applied to correla
lattices characterized by functionsI (r ) that are described by
Gaussian statistics. Gaussian statistics do not describe
most general correlations between lattice sites. Neverthe
Gaussian statistics describe a type of lattice which form
useful generalization of independent lattices. Section II
scribes the functionsI (r ) and their probability distributions
Section III develops the renormalization group procedu
The procedure is illustrated by using a simple renormali
tion group to determine the percolation threshold of the
angular lattice.

II. PROBABILITY DISTRIBUTIONS

Consider a periodicd-dimensional lattice havingN sites
along each edge for a total ofN5Nd sites. Label the sites
along thei th edge (i 51, . . . ,d) by mi , 0<mi<N21, so
that each lattice site is labeled by the set$mi%. It will be
convenient to relabel the lattice sites by the single index
PRE 611063-651X/2000/61~3!/2432~4!/$15.00
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m5(
i 51

d

miN
i 21, ~1!

where 0<m<N21. Let the lattice sites be located at th
positionsrm , and letI m[I (rm). The statistics of theI m are
completely characterized by theN point density function@4#
PN(I 0 , . . . ,I N21) and theN point distribution function

FN~ I 0 , . . . ,I N21!

5E
2`

I 0
•••E

2`

IN21
PN~ I 0 , . . . ,I N21!dI0•••dIN21 .

~2!

Here PN(I 0 , . . . ,I N21)dI0•••dIN21 is the probability that
the mth random variable lies betweenI m and I m1dIm , m
50, . . . ,N21, andFN(I 0 , . . . ,I N21) is the probability that
the mth random variable is less than or equal toI m .

For independent sites, theN point density and distribution
functions are products of one point functionsP1(I m) and
F1(I m). The most natural choice of the density function for
percolation lattice, and the choice generally made for sim
lations of percolation, is to takeP1 to be uniform on the
interval @0,1#, i.e.,

P1~ I m!5H 0, I m,0

1, 0<I m<1

0, I m.1.

~3!

Then the sitem is open with probabilityp and closed with
probability 12p, where

p5F1~ I T!5H 0, I T,0

I T , 0<I T<1

1, I T.1.

~4!

However, it is not necessary to choose this density funct
At least, any piecewise continuous density functionP1(I m)
will give the site m open with probabilityp5F1(I T) and
closed with probability 12p.

It is most useful to choose the density function to be
Gaussian function with mean 0 and variance 1, i.e.,
2432 ©2000 The American Physical Society
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P1~ I m!5
1

A2p
expS 2

I m
2

2 D . ~5!

Then

p5F1~ I T!5
1

2 F11erfS I T

A2
D G , ~6!

where erf(x) is the error function@5#:

erf~x!5
2

Ap
E

0

x

e2y2
dy. ~7!

Multiplying the one point probability densities for the lattic
sites gives theN point probability density

PN~ I 0 , . . . ,I N21!5
1

~2p!N/2
expS 2

1

2 (
m50

N21

I m
2 D . ~8!

To generalize this treatment to correlated lattices, cho
the I m to have a general Gaussian distribution withN point
probability density

PN~ I 0 , . . . ,I N21!5
1

~2p!N/2uQu1/2
expS

2
1

2 (
m50

N21

(
n50

N21

Qmn
21I mI nD ~9!

Here I m all have mean 0,Q is the covariance matrix,

Qmn5^I mI n&, ~10!

which is required to be positive definite@6#, and uQu is the
determinant ofQ. Since the discussion is limited to period
lattices,

Qmn[Q~rm ,rn!5Q~ urm2rnu!. ~11!

This can be written

Q~ urm2rnu!5Q0q~ urm2rnu!, ~12!

where Q05Q(0) and zq(urm2rnu) z<1 @7#. Finally we re-
quire thatq(urm2rnu)→0 asurm2rnu→`.

In working through the renormalozation group, it will b
necessary to determine probability densit
PK(I 0 , . . . ,I K21 ,), K,N. This is most conveniently don
by using the characteristic function, the Fourier transform
the probability density@4#,

MN~v0 , . . . ,vN21!5E
2`

`

•••E
2`

`

expS i (
m50

N21

I mvmD
3PN~ I 0 , . . . ,I N21!dI0•••dIN21 .

~13!

Since

MK~v0 , . . . ,vK21!5MN~v0 , . . . ,vK21 ,0, . . . ,0!,
~14!
se

f

PK(I 0 , . . . ,I K21) is obtained by setting vm50, m
5K, . . . ,N21 and taking the inverse Fourier transform
With Eq. ~9!, a straightforward calculation gives

MN~v0 , . . . ,vN21!5expS 2
1

2 (
m50

N21

(
n50

N21

QmnvmvnD .

~15!

III. RENORMALIZATION GROUP

A real space renormalizaton group procedure on a pe
lation lattice consists of three steps@3#.

~1! The lattice is divided into identical blocks of sites.
~2! Each block of sites is replaced by a single site on

renormalized lattice with renormalized probabilities.
~3! The lattice spacing of the renormalized lattice

brought to the same value as the lattice spacing of the o
nal lattice.

The overall effect of this procedure is to replace the ori
nal lattice by an identical lattice with renormalized probab
ties. Since the original and renormalized lattices are ide
cal, one can take the sameN point density function@Eq. ~9!#
for both. However, the thresholdI T will be renormalized.

The application of the renormalization procedure—that
the way of choosing the lattice blocks and renormaliz
probabilities—depends on the type of lattice. As an exam
and test of the procedure for correlated lattices, consider
percolation threshold of the triangular lattice. The exa
value for the percolation threshold of the triangular latti
can be deduced by an argument of Sykes and Essam@8#,
~also see Ref.@9#, p. 211! @10#. They showed that for any
plane latticeL there is a ‘‘matching lattice’’L* , such that

pc~L !1pc~L* !51. ~16!

The triangular lattice is self matching so Eq.~16! implies that
pc51/2. Essam@9# ~p. 211! pointed out that the argument i
valid for correlated as well as independent lattices.

For independent triangular lattices there is a simple ren
malization group procedure that leads to the exact result
the percolation threshold@3# ~Sec. 3.4!. I will show that the
same procedure leads to the exact percolation threshold
correlated triangular lattices. In the simple procedure
original lattice is broken into triangular blocks of three sit
each. The corresponding site on the renormalized lattic
open if a majority, i.e., two or three, of the sites on the blo
are open. Label the sites of the original block by the indic
0, 1, and 2, and the renormalized site by the index 0. T
the renormalization condition is

Pr~ I 08<I T8 !53Pr~ I 0<I T ,I 1<I T ,I 2.I T!

1Pr~ I 0<I T ,I 1<I T ,I 2<I T!, ~17!

where Pr(I 08<I T8) is the probability thatI 08<I T8 , etc. The first
term on the right is the sum of the three identical probab
ties that two of the original sites are open and one clos
The second term is the probability that all three of the ori
nal sites are open. Now
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Pr~ I 0<I T ,I 1<I T ,I 2.I T!5Pr~ I 0<I T ,I 1<I T!

2Pr~ I 0<I T ,I 1<I T ,I 2<I T!,

~18!

where the first term on the right is the probability that tw
sites are open regardless of the other site. Combining
with Eq. ~17! gives

Pr~ I 08<I T8 !53Pr~ I 0<I T ,I 1<I T!

22Pr~ I 0<I T ,I 1<I T ,I 2<I T!. ~19!

For an independent lattice, Eq.~19! becomes

p853p222p3, ~20!

which has fixed pointsp85p, at p50, 1, and 1/2. For a
correlated lattice, Eq.~19! becomes, in terms of the distribu
tion functions,

F1~ I T8 !53F2~ I T ,I T!22F3~ I T ,I T ,I T!. ~21!

This equation has fixed pointsI T85I T , at I T52`, p
5F1(2`)50, andI T5`, p5F1(`)51. I will show that it
also has a fixed point atI T50: p5F1(0)51/2.
is

To investigate Eq.~21!, it is necessary to determine th
corresponding probability densities which can be done fr
the characteristic functions. In Eq.~15!, set allvm50 except
for v0 , v1, andv2. The only elements of theq matrix then
remaining areq(0)51 andq(a)5q, wherea is the lattice
spacing. This gives

M3~v0 ,v1 ,v2!5expH 2
1

2
Q0@~v0

21v1
21v2

2!22q~v0v1

1v1v21v2v0!#J . ~22!

Obtain M2(v0 ,v1) from Eq. ~22! by setting v250, and
M1(v0) by also settingv150. Then take the inverse Fourie
transforms to obtain

P1~ I 0!5
1

A2pQ0

expF2
I 0

2

2Q0
G , ~23!

P2~ I 0 ,I 1!5
1

2pQ0A12q2
expF2

I 0
222qI0I 11I 1

2

2Q0~12q2!
G ,

~24!

and
P3~ I 0 ,I 1 ,I 2!5
1

~2pQ0!3/2~12q!A112q
expF2

~11q!~ I 0
21I 1

21I 2
2!22q~ I 0I 11I 1I 21I 2I 0!

2Q0~12q!~112q!
G . ~25!
ob-
From Eq.~23!,

F1~0!5E
2`

0

P1~ I 0!dI05
1

2
. ~26!

From Eq.~24!,

F2~0,0!5E
2`

0 E
2`

0

P2~ I 0 ,I 1!dI0dI1

5E
0

`E
0

`

P2~ I 0 ,I 1!dI0dI1 , ~27!

where the last equality is obtained by lettingI m→2I m ,
m50, and 1. On making the change of variables

I 05A11q

2
x2A12q

2
y, ~28!

I 15A11q

2
x1A12q

2
y

in P2(I 0 ,I 1), Eq. ~27! becomes

F2~0,0!5
1

2pQ0
E E e2(1/2Q0)(x21y2)dx dy, ~29!
where the region of integration is bounded by the lines
tained by settingI 050 and I 150 in Eq. ~28!. Changing
variables to polar coordinates gives

F2~0,0!5
Q

2pQ0
E

0

`

e2(r 2/2Q0)r dr 5
Q

2p
, ~30!

whereQ is the angle between the linesI 050 andI 150. On
setting I 050 and I 150, Eq. ~28! takes the formni•r50, i
50 and 1, whereni is a unit normal to linei. If F is the
angle between the two normals,Q5p2F, and

cosF52cosQ5sinS Q2
p

2 D5n0•n15q, ~31!

so Q5(p/2)1sin21q and

F2~0,0!5
1

4
1

1

2p
sin21q. ~32!

From Eq.~25!,

F3~0,0,0,!5E
2`

0 E
2`

0 E
2`

0

P3~ I 0 ,I 1 ,I 2!dI0dI1dI2

5E
0

`E
0

`E
0

`

P3~ I 0 ,I 1 ,I 2!dI0dI1dI2 , ~33!
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where the last equality is obtained by lettingI m→
2I m , m50, 1, and 2. On making the change of variable

I 05A112q

3
x1A12q

6
y1A12q

2
z,

I 15A112q

3
x1A12q

6
y2A12q

2
z, ~34!

I 25A112q

3
x22A12q

6
y

in P3(I 0 ,I 1 ,I 2), Eq. ~33! becomes

F3~0,0,0!5
1

~2pQ0!3/2 E E E
3e2(1/2Q0)~x21y21z2!dx dy dz, ~35!

where the region of integration is bounded by the pla
obtained by settingI 050, I 150, and I 250 in Eq. ~34!.
Changing variables to polar coordinates gives

F3~0,0,0!5
V

~2pQ0!3/2 E0

`

e2r 2/2Q0r 2dr5
V

4p
, ~36!

whereV is the solid angle bounded by the planesI 050, I 1
50, andI 250. On settingI 050, I 150, andI 250, Eq.~34!
takes the formni•r50, i 50, 1, and 2, whereni is a unit
normal to planei.
s

s

The solid angleV is equal to the area of the spheric
triangle formed by the intersections of the three planes w
a unit sphere centered at the origin. A theorem of spher
geometry@11# gives this area to be the sum of the thr
angles of the triangle minusp. Since each angle of the tri
angle is just equal to the dihedral angle between the co
sponding planes,

V5Q011Q121Q202p, ~37!

whereQ i j is the dihedral angle between planesi andj. If F i j
is the angle between the normals to planesi and j, Q i j 5p
2F i j , so

cosF i j 52cosQ i j 5sinS Q i j 2
p

2 D5ni•nj5q. ~38!

ThenQ i j 5(p/2)1sin21q, V5(p/2)13sin21q, and

F3~0,0,0!5
1

8
1

3

4p
sin21q. ~39!

Equations ~26!, ~32!, and ~39! then show that I T50,
p5F1(0)5 1

2 is indeed a fixed point of Eq.~21!, so that the
renormalization group procedure gives the exact percola
thresholdpc51/2.
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